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The Calculation of Phases from the Patterson Function

By H. HAurTMAN AND J. KARLE
U.S. Naval Research Laboratory, Washington 25, D.C., U.S. 4.

(Recetved 24 July 1961)

A formula expressing the values of the structure invariants in terms of the Patterson function has
been derived. It has the advantage over previous phase determining formulas in that it appears
to be insensitive to rational dependence and overlap in the Patterson function.

1. Introduction

The magnitudes of a sufficient number of structure
factors determine the magnitudes of the structure
seminvariants (Hauptman & Karle, 1953, 1956, 1959,
1961). Once the magnitudes of the structure semin-
variants have been determined, the wvalues of the
individual phases may then be found by simple
arithmetic manipulations. The program for these
procedures has been described in the above references.
Detailed procedures for the centrosymmetric space
groups may be found in a recent series of papers
(Karle & Hauptman, 1959, (referred to hereafter as
1P(1959)) ff.). The details for the non-centrosymmetric
space groups will be published shortly.

The recent series of papers contain in addition ex-
plicit formulas (equations (3-1-2) and (3-2-2), 1P(1959))
for calculating the magnitudes of the seminvariants
from the magnitudes of the structure factors. It is
important to emphasize that although improved for-
mulas for the seminvariants will be developed (e.g.
equation (2-3-9) of this paper) the unified programs
for going from the seminvariants to the individual
phases, described in the recent series of papers
(1P(1959), ff.), clearly retain their validity.

We have applied (3-1-2) and (3-2-2) of 1P(1959) to
data which were available from the centrosymmetric
crystals spurrite and N-benzyl-1,4-dihydronicotin-
amide. When only three-dimensional data were used
(omitting one- and two-dimensional data) in applying
these formulas to the spurrite data, excellent agree-
ment was obtained. When the complete set of data
was used, although the important signs were again
correctly obtained, the quantitative agreement was
poor. In the application to the N-benzyl-1,4-dihydro-
nicotinamide, only the three-dimensional data were
used. Again, the important signs were correctly ob-
tained, but the quantitative agreement was only fair
with some notable discrepancies (Karle, I., 1961).
If the errors occurring in these applications are
typical, (3:1:2) and (3:2:2) of 1P(1959) would be
adequate for centrosymmetric structures. Clearly how-
ever, owing to the lack of quantitative agreement,
attempts to use the analogous formulas in the non-
centrosymmetric space groups would not, as a general
rule, be likely to succeed. This is due to the fact that
in the non-centrosymmetric space groups the phases

may be anywhere between 0 and 27 while they must
be 0 or 7 in the centrosymmetric space groups.

The main reason for discrepancies lies in the fact
that Patterson functions corresponding to actual
crystal structures often contain many overlapping
peaks. These give rise to correction terms which were
not included in (3-1-2) and (3-2-2) of 1P(1959). It was
therefore desirable to develop a formula from which
the seminvarijants could be found and which would
automatically take into account the effects of the
overlapping peaks in the Patterson function. It will
be seen that the new formula which we shall call the
vector-interaction formula, in contrast to (3-1-2) and
(3-2:2) of 1P(1959), makes direct use of the Patterson
function rather than the magnitudes of the structure
factors. The existence of such an alternative formula
is not unexpected since the Patterson function, being
the Fourier transform of the magnitudes of the struc-
ture factors, contains the same information.

The new formula has additional advantages. Errors
arising from limitations in both the number and
accuracy of the observed data are reduced. In addition
the one- and two-dimensional data may now be
utilized, whereas previously their inclusion introduced
errors,

2. Analysis for point atoms
2-1. Notation
We denote by r; the position vector of the jth atom

and by Z; the atomic number. The quasi-normalized
structure factor & is defined by means of
N
En=(1/0t?) 3 Z; exp [27ih.1y] , (2-1-1)
j=1
where

N

=1

(2:1-2)

and N is the number of atoms in the unit cell. It is
evident from (2-1-1) that the phase @, of the quasi-
normalized structure factor &, is the same as that
of the crystal structure factor Fy. Finally, we denote
by ry the difference r;—rj; so that r;=-—ry; and
Tij+ Tk ="Tik.

Since (2:1-1) is the basis of our analysis, and no
use is made of the crystal symmetry, it is clear that
the final formula (2-3-9) is valid for every space group.
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2:2. Some preliminary results
From (2-1-1) we find

N
|8l cos pp = (l/aéfz).Z Z;cos 2zth.ry, (2:2-1)

| &l sin @y = (1/0¥?) ZZj sin 2zh.r;, (2:2-2)
and .
|€ul2 = (1) 02) 2 ZF + (1/02)_2}jZiZ,-exp[2nih.(r,;—r,-)] s
= Y (2:2:3)
or N
[éahlz—l = (2/0’2) > ZiZj cos 27th.1‘¢j . (2'2'4)
fond
<
Equation (2-2-4) yields
(|€uf2—1) cos 2zh.r
N
= (2/02).2 Z1Z; cos 2zh.ry; cos 2nh.r,  (2-2-5)
7.?7
or
={(|&n|2—1) cos 2zh.r)y
= (ZiZj/o2)ifr = 1y } | (2-2-6)

= 0 ifr & + Ty

which is evidently the Patterson function. We assume
that P(r) is available, and the main formula will be
seen to express the values of seminvariants in terms
of P(r).

From (2-2-4) we also obtain, since the value of
|&pl2—1 is relatively insensitive to the substitution
Z — Z*2 (whence o2 — o3) and since

(Zi+Z9)[2 ~ (Z:Zy)2,

the following approximate relationship:

(1/03) Z ZZii(Zs+ Z5) cos 2mh. 1y

i<j
1

N
- a0 203 2 (Z:Z;5)8/2 cos 2wh .1y ~ | Epf2—1;

ifi
and observe that (2-2-7) has exact validity if the struc-
ture consists of identical atoms. We note also that,
since (2:2-7) will be used only in the derivation of the
small correction term in the main formula (2-3-9),
inaccuracies in (2-2-7) lead to negligible errors in the

final result.

(2:2-7)

2-3. The vector-interaction formula
We assume throughout that

hy+hs+hs=0 (2-3-1)

and introduce the abbreviations
Ei=6Epy 1=1,2,3; (2-3-2)
@i = @, 1 =1,2,3. (2-3-3)

Hence g1+ @2+ s is a structure invariant and it is
natural to seek an expression for

THE CALCULATION OF PHASES FROM THE PATTERSON FUNCTION

[E1E2673| cos (p1+ o+ @)

in terms of the Patterson function P(r).
Equations (2-2-1) and (2:2-2), together with the
trigonometric identity
cos (1 @2+ @) = cos @1 €os @2 COS @3
—cos 1 sin @ sin @3
—sin @1 cos @ sin @3
—sin ¢y sin @2 cos @3 , (2-3+4)
imply

I(ﬁ(o@z@@sl cos (@1 + @2+ @s)
1/0'3/2 2 ZszZk cos 2n(h1.r¢+h2.r,-+h3.rk)

bjrk (2-3-5)
N

= (1/0’3/2) ZZ? +(1/03 /2) 2 Z:Zi(Zi+ Z;) (cos 27h; . 1y
=1

<]
1
+ cos 2mhs. r;j+cos 27hg. rij)

N
+ (1/0’2/2) 2 ZiZ;Zyxcos2m (hy. T+ he. rjk). (2-3-6)
vy
1

Making use of (2-1-2) and (2:2:7), we find, since
Iij= —Tyi,
|&1E2875| cos (p1+ @2+ @s)

~(03/¢7/2)+(03/03/2 (16124 | &2+ 6512 —3)
+(1/03") z 2237y cos 2m(hy. Ty —he.ry) (2-3°7)
ik
i
or
|&1E2878] cos (p1+ @2+ ps)
03/03/2 J(E12+]E22+ | £32—2)
+ 2 {(Z'th/O'Z).

(Z;Zx] 02) . (Z:Zx] 02) M2
i<j<k
x {cos 27 (hy.rij— 2. 1%) + cos 2o (he. Ty — hy . 1jx)
+ cos 27 (he.ri;—hg. 1)+ cos 27 (hg. 1y —he. 1)
+cos 2xm (hs Tyj— h;. rjk) 4-cos 27 (h1 Ly— hs. l‘jk)} .
(2-3-8)
Finally, utilizing the Patterson function (2-2-6) and
the relation r;;+rjz=r;, we obtain, if there is no
overlap of Patterson peaks, the main formula (the
vector-interaction formula)

|6162673] cos (g1 + pa+ @)
~ (03/63%) (| €12+ | E2[2+ | E3[2—2)
1/2 Z{P (r)P(r')P(r+r')}/2 {cos 27 (hy .r — hg.1’)

+cos 2n(h2.r h;.r")
+cos 27z (hg.r—hs.r’')+cos 2z (hs.r—hy.r’)
+cos 27 (hg.r—h;.r')+cos 2z (hy.r—hs.1')},
(2-3-9)
where naturally the summation in (2-3-9) is extended

over all Patterson peaks r, r’ such that r+r’ is also
a Patterson peak. For exactness, only those r and r’
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would be used which involve the identification r=ry;,
r'=r, r+1'=r; The factor 1/2 occurs on the right
side because, together with the pair r, r’, for which
r+r’ is also a Patterson peak, the Patterson function
contains peaks at —r, —r’, and (—r)+(—1r’) is also
a Patterson peak. Clearly this factor would be sup-
pressed if the summation (2-3-9) were extended over
only those vectors r in the asymmetric half of the
unit cell. We note finally that the term

(03/03%) (|E1]2+ | E2l2+ | &52—

appearing in (2-3-9) is a correction term which be-
comes negligibly small for large N. It should be
emphasized that the only approximation used in the
derivation of (2-3'9) involves this correction term.

In the case that the Patterson function contains
many overlapping peaks, but the structure consists
essentially of N identical atoms, it is easy to show
that the only modification required in (2-3-9) is to
replace

{P@)P()P(r+x)}2 by {m(r, r')}",

where m(r, r’) is the minimum of P(r), P(r’), P(r+r’).

In this case therefore

|&182E5] cos (@1+ g2+ @s)
0‘3/0'3/“ |é“’1|2+]£’2]2+[£3]2 2)
1/2)2{m (r, r')}32 {cos 27 (h1.r —hs.r’)

+cos2n(h2r h;.r’)+cos 2z (he.r —hs.1')
+cos 2z (hg.r—he.r')+cos 2r(hs.r—hy.r’)

+cos 2z (hy.r—hs.r')} . (2-3-10)

The extent to which unequal atom structures having
considerable overlap in the Patterson function may
be treated by (2-3-9) in an exact fashion depends
upon the extent to which the nature of the overlapin
the Patterson peaks can be interpreted. If a detailed
analysis of the Patterson has not been, or cannot be,
made, certain simple modifications of (2-3-9) may be
introduced which, in general, are expected to cause
only minor errors in the computation. For example,
a weighting for the six cosines of (2:3-9) intermediate
between those used in (2:3-9) and (2-3-10), would be
proportional to {P(r)P(r’)P(r+r’)}/3 and give rise to

|§1€2€3] cos (@1 + @2+ @3)
~ (0303 ( I(o("llz'i'Ié"2|2+|6503|2 2)
+C’Z{P r)P(r')P(r+1')}/3 {cos 27 (h;.r —ha.1")

+COS27‘6(h2 r—h;.r’)+cos 2z (hs.r —h3.r’)
+cos 27 (hs.r —he.r’')+cos 2 (hz.r—h;.r’)

+cos 27 (hy. T —hy.1")}, (2-3-11)

where C is a proportionality constant determined from
the calculations in a manner to be discussed later.
An alternative weighting would be the mid-value of
P(r), P(r'), P(r+T').

3. Analysis for electron distributions

Although (2-3-9) was derived on the basis of a point
atom structure, it has the additional feature that it
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may be applied to Patterson functions obtainable
from experiment. This would require a minor modifica-
tion, namely the introduction of a scaling factor which
is a function of the scattering angle. It is the purpose
of this section to justify these statements.

If we denote by g(r) the electron density distribution
function, the structure factor F'y, is defined by means of

Fy = Svg(r) exp [2mth.rldr . (3-1)

Just as (2-1-1) implies (2-3-5) we now find from (3-1)

|F1F2F3| cos (@14 @2+ @s) = SSS e(r)e(r’)o(r")

x ¢os 27z (hy.r+he.r’+hs.r"’)drdr’'dr”’, (3-2)

where h;+hz+hsz=0.
If we introduce for g(r) the sum of Gaussian distribu-
tions

N.
o(r) = ;512‘1; exp [—Bylr—ry?], (3-3)

the integral in (3-2) may be evaluated, leading to
[ F1F2F3| cos (@1+ @2+ @s3)

N 2 2 2
oS AiA; A Xp[—- <k h3 k3>]

ik « (BiBByy2® 5B E

X COoS 27! (hl.ri+h2.rj+h3.r;¢) , (3’4)

where A=|h| and C’ is a constant. Equation (3-4) is
to be compared with (2-3-5) in which Z; is replaced
by (4;/B¥?) exp [—n%h%/B;], etc. The same analysis
which led to (2:3:8) now gives rise to

|F1F2F3| cos (14 @2+ @a)

~ (03/63%)8 (51, 82, 83) (|E1|2+| S22+ | &'5]2 —
+0/1 sz { AiAf AJAIC o AtAIc }1/2
i<j<k \(Bi+By)*2 (Bs+ Bx)*2 (Bi+ Bx)*?
1

1 1 3/4 1 1 3/4 1 1 3/4
(&5 (5tE 55

(58
BB Bk>

X {COS 27 (h1.ry—he. 1)+ cos 27 (hg.ry—hy. 1)

+cos 27 (he.ri;—hs.ryx) + cos 2n(hs.ry— ha. 1)

+cos 2 (h3 ri;—hiry) +cos 2x (h1 ri—hs. rm)}
(3:5)

xexp[

where S(s1, 2, 83) in the correction term is some func-
tion of s;=sin 6;/2, =1, 2, 3. If p(r) is given by (33),
the Patterson function,

P(r) = S e(r)e(r+r')dr’, (3-6)

reduces to

P(r) = o2 3 s

BB, ,
”W‘*Xp{ B+5" ")

3-7)
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Since the 4:4;/(B:+ B;)3/2 are proportional to the peak
heights in the Patterson function, we may replace
these by P(r) in (3-5), thus obtaining the analogue of
(2:3:9),

&18283] cos (1 + @z + @s)
~ (03/0f32 (| 8112+ | 822+ | E52—2)
+ D(s18283) X {P(r)P(r')P(r + 1) }1/2

W E
x {cos 27 (hy.r —hz.r')+cos 27 (he.r —h;.1’)
+cos 27 (he.r —hs.r')+cos 2z (hg.r —hs.r’)
+cos 27 (hg.r—hy.r')+cos 27 (hy.r—hs. ')} .
(3-8)

The same result follows if other electron distribu-
tions are used, e.g. if
~
o(r) = = As/(1+ Bjlr —1;]%) . (39)
i=
In short the same result holds for all electron distri-
butions approximating a discrete atom structure.

It is clear that the sum in (3:8) is to be taken over
all Patterson peaks r, r’. In application it is assumed
that the function D of the three variables si, ss, 83 is,
to a good approximation, a function of s;.sz2.s3 alone.
Hence D(s1s2s3) is found numerically by computing
(3-8) for those invariants g1+ @2+ @s which, as a con-
sequence of the space group symmetry, are equal to
0 or z. In those instances the magnitudes of the left
side of (3-8) would be known. Although this simple
procedure would not be applicable in the space group
P1, it is possible to treat this space group in a special
way.

4, Numerical tests

At first two one-dimensional tests were carried out
with structures having no symmetry. In one, identical
atoms were placed at 0, 1/5, 1/4, 9/20. The true value
of |£1E16E5| cos (p1+ @a— @s) was 2:62; its value, as
computed from (2-3-10), was 2-57. In the second
example, identical atoms were placed at 0, 0-133,
0-289, 0-422, 0-639, 0-863. The expression

|E4E5E | cos (pat+ @5 — o) ,

with the true value 0-62, was computed to be 0-66 by
(2-3-10). Since these examples were designed to exhibit
the effect of rational dependence and overlap in the
Patterson function, they afford preliminary indica-
tions of the fact that (2-3-10) is relatively insensitive
to these effects.

A three-dimensional test in the space group P2;2,2,
involved the placing of ten atoms, four carbon, two
- nitrogen, and four oxygen atoms in the asymmetric
unit of the unit cell. The arrangement of the atoms
was chosen to simulate a true structure and involved
a considerable amount of overlap in the Patterson
function. Interatomic vectors were computed to the
nearest 1/30 in the z-direction and the nearest 1/60
in the y- and 2-directions. Equation (2-3:10) then
yielded the values of the eighteen expressions

THE CALCULATION OF PHASES FROM THE PATTERSON FUNCTION

| &1k Epixl €08 (Pn+ Px— P x)

involving the invariants @p+ @x— @,k listed in col-
umn 1 of Table 1. The true values of these expressions
are shown in column 2.

Table 1. Comparison of values of

|EnExE nik| €08 (@n+ Px— Prix)

with those computed from (2-3-10) for an artificial
10 atom structure in space group P212:2;

Computed True

h k h+k values values
360 360 600 —3-51 -17-23
304 304 600 5-44 4-85
307 307 600 —7-21 —17-15
308 308 600 15-81 15-49
102 102 204 9-68 10-37
122 122 204 3-27 3-89
142 142 204 4-00 3-63
204 204 008 —4-02 -9:75
304 304 008 777 7-61
074 074 008 10-09 6-16
304 304 608 6-77 4-47
324 324 608 418 3-37
333 333 066 3-98 319
2438 243 086 —2:40 —2:85
543 543 086 3-43 4-04
610 370 360 14-80 17-05
610 0T1 601 23-82 21-17
370 011 361 15-83 13-76

The invariants of Table 1 are composed of phases
associated with one-, two- and three-dimensional
structure factors. In spite of considerable overlap in
the Patterson function, the quantitative agreement
shown in Table 1 is satisfactory. In particular, those

€6k E nixl €08 (Pn+ Pr— Pnrx)

having negative values are correctly computed. It is
known from the probability theory that the value of
oS (Pp+ @k — @n.x) is generally positive if |6, & Eppxl
is large. Clearly it is important to determine the
invariants gy + @i — @nx for which cos (¢, + @x— @pix)
is negative.

It is apparent from the nature of the formulas
described here that the accuracy with which phases
may be determined depends upon the quality of the
Patterson function. In a forthcoming paper a proce-
dure for obtaining high quality Patterson maps will

be described.
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