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T h e  C a l c u l a t i o n  of P h a s e s  f r o m  the  P a t t e r s o n  F u n c t i o n  

BY H. HAUPTMAN AND J. ~ L E  

U.S. Naval Research Laboratory, Washington 25, D.C., U.S.A.  

(Received 24 July 1961) 

A formula expressing the values of the structure invariants in terms of the Patterson function has 
been derived. I t  has the advantage over previous phase determining formulas in that it appears 
to be insensitive to rational dependence and overlap in the Patterson function. 

1. Introduct ion 

The magnitudes of a sufficient number of structure 
factors determine the magnitudes of the structure 
seminvariants (Hauptman & Karle, 1953, 1956, 1959, 
1961). Once the magnitudes of the structure semin- 
variants have been determined, the values of the 
individual phases may then be found by simple 
arithmetic manipulations. The program for these 
procedures has been described in the above references. 
Detailed procedures for the centrosymmetric space 
groups may  be found in a recent series of papers 
(Karle & Hauptman,  1959, (referred to hereafter as 
1P(1959)) ft.). The details for the non-centrosymmetric 
space groups will be published shortly. 

The recent series of papers contain in addition ex- 
plicit formulas (equations (3.1.2) and (3.2.2), 1P(1959)) 
for calculating the magnitudes of the seminvariants 
from the magnitudes of the structure factors. I t  is 
important  to emphasize tha t  although improved for- 
mulas for the seminvariants will be developed (e.g. 
equation (2.3.9) of this paper) the unified programs 
for going from the seminvariants to the individual 
phases, described in the recent series of papers 
(1P(1959), ff.), clearly retain their validity. 

We have applied (3-1.2) and (3.2.2) of 1P(1959) to 
data which were available from the centrosymmetric 
crystals spurrite and N- benzyl- 1,4- dihydronicotin- 
amide. When only three-dimensional data were used 
(omitting one- and two-dimensional data) in applying 
these formulas to the spurrite data, excellent agree- 
ment  was obtained. When the complete set of data 
was used, a l t hough  the important  signs were again 
correctly obtained, the quanti tat ive agreement was 
poor. In  the application to the N-benzyl-l,4-dihydro- 
nicotinamide, only the three-dimensional data were 
used. Again, the important  signs were correctly ob- 
tained, but  the quanti tat ive agreement was only fair 
with some notable discrepancies (Karle, I., 1961). 
If the errors occurring in these applications are 
typical, (3.1.2) and (3.2.2) of 1P(1959) would be 
adequate for centrosymmetric structures. Clearly how- 
ever, owing to the lack of quanti tat ive agreement, 
a t tempts  to use the analogous formulas in the non- 
centrosymmetric space groups would not, as a general 
rule, be likely to succeed. This is due to the fact tha t  
in the non-centrosymmetric space groups the phases 

may be anywhere between 0 and 2~ while they must 
be 0 or ~ in the centrosymmetric space groups. 

The main reason for discrepancies lies in the fact 
tha t  Patterson functions corresponding to actual 
crystal structures often contain many overlapping 
peaks. These give rise to correction terms which were 
not included in (3.1-2) and (3.2-2) of 1P(1959). I t  was 
therefore desirable to develop a formula from which 
the seminvariants could be found and which would 
automatically take into account the effects of the 
overlapping peaks in the Patterson function. I t  will 
be seen tha t  the new formula which we shall call the 
vector-interaction formula, in contrast to (3-1-2) and 
(3.2.2) of 1P(1959), makes direct use of the Patterson 
function rather than  the magnitudes of the structure 
factors. The existence of such an alternative formula 
is not unexpected since the Patterson function, being 
the Fourier transform of the magnitudes of the struc- 
ture factors, contains the same information. 

The new formula has additional advantages. Errors 
arising from limitations in both the number and 
accuracy of the observed data are reduced. In addition 
the one- and two-dimensional data  may now be 
utilized, whereas previously their inclusion introduced 
errors. 

2. Analysis for point atoms 
2.1. Notation 

We denote by r1 the position vector of the j t h  atom 
and by Z~ the atomic number. The quasi-normMized 
structure factor d°n is defined by means of 

~r 

d~h= (1/a~/2) ~Y Z~ exp [2~ih.  r~], (2.1.1) 

where 
2V 

an = .2~ Z~ (2.1.2) 
]=1 

and N is the number of atoms in the unit cell. I t  is 
evident from (2.1.1) tha t  the phase ~h of the quasi- 
normalized structure factor @h is the same as tha t  
of the crystal structure factor Fh. Finally, we denote 
by r~j the difference r ~ - r j ,  so tha t  r ~ j = - r j ~  and 
r i j  + r j k  = r i~ .  

Since (2.1.1) is the basis of our analysis, and no 
use is made of the crystal symmetry,  it is clear tha t  
the final formula (2.3.9) is vahd for every space group. 
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2.2. Some preliminary results 
From (2-1-1) we find 

~r 

i#,,i cos v~ = (1/a~/~)22zs cos 2 ~ h . r s ,  (2.2-1) 

~r 

I d~hl sin q)h = (1/o'~/~) 22 Z~ sin 2~h .  r~, (2.2.2) 
and ?=1  

N ~g 

ld°~l 2 -- (1/~.) 22 Z~ + (1/~.) 22 Z~N~ exp [2~ih. (r~- r~)], 
i=i i# i  (2.2.3) 

o r  
2v 

[d~[ ~'- 1 = (2 /~)  22 Z~ZI cos 2 ~ h . r ~ .  (2.2.4) 

1 

Equa t ion  (2.2.4) yields 

(1#~1 ~ -  1) cos 2~rh. r  
~r 

= (21a2)22Z~Z~ cos 2 ~ h . r ~  cos 2~ rh . r ,  (2.2.5) 
i < ]  

1 

o r  

P ( r ) = < ( l # ~ l ~ -  1) cos 27~h.r>~ } 
= (Z~Z~/a2)£fr = _+r~s , (2.2.6) 
= 0 i f r  # _+r~s 

which is evident ly  the  Pa t te rson  function. We assume 
tha t  P( r )  is available, and the main formula will be 
seen to express the values of seminvariants  in terms 
of P(r ) .  

F rom (2.2.4) we also obtain,  since the value of 
]d~nlg--1 is re lat ively insensitive to the subst i tut ion 
Z -+ Z ai~" (whence ~. -~ ~a) and since 

(Z~ + Zs)/2 ~ (Z~Zs) ~/~, 

the  following approximate  relat ionship:  
~v 

(1/aa) ~ Z~Z~(Z~ + Z~) cos 2 g h .  r~t 
i < j  

1 
iv 

"~ 2/(~a 22 (Z~Z~) a/~ cos 2 ~ h . r ~  ~ Ig~hl ~'- 1; (2-2.7) 

1 

and observe t ha t  (2.2.7) has exact va l id i ty  if the  struc- 
ture  consists of identical atoms. We note also tha t ,  
since (2.2.7) will be used only in the der ivat ion of the 
small correction te rm in the main formula (2.3.9), 
inaccuracies in (2-2.7) lead to negligible errors in the 
final r0sul~. 

2.3. The vector-interaction formula 
We assume throughout  t ha t  

h ~ + h ~ . + h a = 0 ,  (2.3.1) 

and introduce the abbreviat ions 

d~ = d ~ ,  i = 1, 2, 3; (2.3.2) 

~ = ~ ,  i = 1 , 2 , 3 .  (2.3.3) 

Hence ~ +  ~ +  ~a is a s t ructure  invar ian t  and it  is 
na tura l  to seek an expression for 

le1~2831 cos (~1+ ~-t-- g,8) 

in terms of the Pa t te rson  function P(r ) .  
Equat ions  (2.2.1) and (2.2.2), together  with  the 

tr igonometric iden t i ty  

cos (~1 + ~2 + ~8) = cos ~1 cos ~2 cos ~3 
- cos ~1 sin ~2 sin ~a 
- sin ~i cos ~2 sin q~a 
- s i n  ~l sin ~2 cos ~a ,  (2.3.4) 

imply  

[@1#2d%l cos (~1+ ~2+ ~a) 

- (1/a~/2) ~ Z~ZjZ~ cos 2 ~ ( h z . r ~ + h 2 . r j + h s . r ~ )  
i , i , k  (2-3-5) 

/v N 

= (l/a2 a/e) ~7 Z~+(1/a~/2) 22 Z~Zj(Z~-4-Z#) (cos 2~hz.  r~# 
i=1 i < j  

1 

+ cos 2~h9. rig + cos 2gha.  r~) 
~r 

+ (1/(~/2) ~ ZiZsZ~ cos 2~ (hi. rik + h2. rs~). (2.3.6) 

1 

Making use of (2.1.2) and (2.2.7), we find, since 

]d%d%d%l cos ( ~ +  ~ s +  ~a) 

(~a/~/~) + (~a/~/~) (l #11 ~ + I#~I "~ + l#a[ ~ - 3) 

+(1/~/ '~) 22 Z~Z#Z~ cos 2~(h~ . r~#-he . r j~ )  (2-3-7) 
i 4 ~ k  

1 

o r  

I#~#~#al cos ( ~ +  ~ +  ~a) 

~(aa/~/~)(I  #11~ + l#~l~ + I#~I ~ -  2) 
~v 

+ Z {(g~z~/~). (z~z~/~). ( z , z u ~ ) ) ~  
i < ] < k  

1 

× (cos 2r~ (hz. r~s - h2. rl~) % cos 27~ (h2. r~ - -  hx. ri~) 
+ cos 2~ (h2. r ~ -  ha. rs~) + cos 2~ (ha. r~s -  h~. r~ )  
+ cos 2u  (ha. r ~ -  h~. rs~) + cos 2~ (h~. r~s -  ha. r ~ ) } .  

(2-3.8) 

Finally,  utilizing the Pa t te rson  function (2-2-6) and 
the relation r ~ s + r s ~ = r ~ ,  we obtain, if there is no 
overlap of Pa t te rson  peaks, the main formula (the 
vector- interact ion formula) 

I ~ ~ ]  cos (~l  + ~ +  ~ )  

(aa/,~/~) (i ,#~l~ + I #~1" + I#al ~ -  2) 
+ (1/2) ~ {P(r)P(r')P(r + r ')} ~/2 {cos 2g(h~ . r -  h2. r ' )  

r ,  r t 

+ cos 2~ (h~. r -  h i .  r ' )  
+ cos 2~ (h~. r -  ha. r ' )  + cos 2~r (ha. r -  h~. r ' )  
+ cos 2 z  (ha. r -  hz. r ' )  + cos 2~ (hi.  r -  ha. r ' ) } ,  

(2-3.9) 

where na tura l ly  the  summat ion  in (2.3.9) is extended 
over all Pa t te rson  peaks r ,  r '  such t ha t  r +  r '  is also 
a Pa t te rson  peak. For  exactness, only those r and  r '  
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would be used which involve the identification r = ru,  
r '  = r~ ,  r + r '  = r~ .  The factor 1/2 occurs on the r ight  
side because, together  with the pair r,  r ' ,  for which 
r + r '  is also a Pa t te r son  peak, the Pa t te rson  function 
contains peaks a t  - r,  - r ' ,  and ( - r) + ( - r ' )  is also 
a Pa t t e r son  peak. Clearly this factor would be sup- 
pressed if the summat ion  (2.3.9) were extended over 
only those vectors r in the asymmetr ic  half of the 
uni t  cell. We note finally t ha t  the  te rm 

(~/ (~/~)  (I #~ 12 + l#~l ~ + I#al ~ - 2) 
appearing in (2.3.9) is a correction te rm which be- 
comes negligibly small for large N. I t  should be 
emphasized t ha t  the only approximat ion  used in the 
der ivat ion of (2.3.9) involves this correction term. 

In  the case t ha t  the  Pa t te r son  function contains 
m a n y  overlapping peaks, bu t  the s t ructure  consists 
essentially of N identical atoms, i t  is easy to show 
t h a t  the only modificat ion required in (2.3.9) is to 
replace 

{P(r)P(r')P(r + r ')} ~/~ by  {re(r, r ')} a/~, 

where m(r,  r ' )  is the  min imum of P(r ) ,  P ( r ' ) ,  P ( r  + r ' ) .  
In  this case therefore 

I#~#~#~1 cos ((p~+ ~ +  ~) 
( o d  o-~/0) (I #~ I ~ + I o%1 z + l gsl ~ -  2) 

+ (1/2)_~v {re(r, r')}a/e {cos 2 ~ ( h ~ . r - h e . V )  
r~ r '  

+cos  2 ~ ( h ~ . r - - h ~ . r ' ) + c o s  2 ~ ( h ~ . r - - h ~ . r ' )  
+cos  2 ~ ( h a . r -  he . r ' )  + cos 2 z ( h a . r - h t . r ' )  
+ cos 27~ (h~. r -  ha. r ' ) } .  (2.3.10) 

The extent  to which unequal  a tom structures  having 
considerable overlap in the  Pa t te rson  function m a y  
be t rea ted  by  (2.3.9) in an exact  fashion depends 
upon the extent  to which the na ture  of the overlap in 
the  Pa t te rson  peaks can be interpreted.  If a detai led 
analysis of the Pa t te r son  has not  been, or cannot  be, 
made,  certain simple modifications of (2.3.9) m a y  be 
in t roduced which, in general, are expected to cause 
only minor errors in the computat ion.  For  example, 
a weighting for the six cosines of (2.3.9) in termediate  
between those used in (2.3.9) and (2.3.10), would be 
proport ional  to {P(r)P(r')P(r + r ')} ~/s and give rise to 

[#l@~gal cos ( ~ l +  9~.+ q~s) 
(~d~/~)  (1#~1' + I#~1~+ 1#~1~-2) 

+C ~, {P(r)P(r')P(r + r ')} ~/a {cos 2 ~ ( h ~ . r -  h~. r ' )  
r~ r '  

+cos  2 ~ ( h ~ . . r -  h~. r ' )  +cos  2 ~ ( h ~ . . r - h a . r ' )  
+ cos 2~ (ha. r -  he. r ' )  + cos 2 z  (ha. r -  h~. r ' )  
+ cos 2g  (h~. r - -  h3. r ' ) } ,  (2"3"11) 

where C is a propor t ional i ty  constant  determined from 
the  calculations in a manner  to be discussed later.  
An al ternat ive  weighting would be the mid-value of 
P(r),P(r') ,P(r+r') .  

3. Analys i s  for e lectron distr ibut ions  

Although (2.3.9) was derived on the basis of a point  
a tom structure,  it  has the addi t ional  feature t h a t  it  

m a y  be applied to Pa t te r son  functions obtainable 
from experiment.  This would require a minor modifica- 
tion, namely  the  in t roduct ion of a scaling factor which 
is a function of the scattering angle. I t  is the  purpose 
of this section to just i fy these s ta tements .  

If we denote by  o(r) the  electron densi ty  dis tr ibut ion 
function, the  s t ructure  factor Fh is defined by  means of 

F~ = I q(r) exp [ 2 z i h . r ] d r .  (3.1) 
V 

Jus t  as (2.1.1) implies (2.3.5) we now find from (3.1) 

lF~F~Fal cos ( q~ + q~ + q~) = I f f ~(r)~(r ' )~( r")  

x cos 2~r(h~.r+h~.r'+ha.r")drdr'dr", (3.2) 

where h~ + he + ha = 0. 
If we introduce for 0(r) the  sum of Ganssian distribu- 

t ions 

o(r) = Y~' zl~ exp [ - B ~ [ r - r ~ [ ~ ] ,  (3.3) 

the integral  in (3.2) m a y  be evaluated,  leading to 

[F~F2F3] cos (~1+ ~ . +  ~8) 

z¢ A,AjA~ I (h 2 h 2 ~2, 7)[ 
= C' __~w (B~B~B~i -37~ exp L - ~2 + ,~ + ,~3 i,,,k \B ,  B, B~/~ 

1 

x cos 2~ (hi. r~ + h~. r~ + h3. r~) ,  (3"4) 

where h =  [hi and C' is a constant.  Equa t ion  (3.4) is 
to be compared with (2.3.5) in which Z~ is replaced 
by  (Ai/B~/2) exp [-~2h~/Bi], etc. The same analysis 
which led to (2.3.8) now gives rise to 

1. 

[F1F2Fz] cos (~1+ ~2+ ~8) 

(crsl(~/e)S(s~, s2, s3)(I#ll~+ I#ul2+ ld%l~- 2) 

+C" .~ ~ A,A, A,Az~ A,Azc ~lp 
i < j < k/ (B,  + B]) 3/~'" (Bj + B~)3/~ (B, + BD3/~J 

1 (1 1~3'4/1 1 \a/a / 1 1 \  a/4 

iN +N) iN + N) 
/ ~,2 h 2 h 2 ~ ' °1  2 3 

x {cos 2~ (h,.  r u -  h2. rj~) + cos 2u  (h2. r u -  h , .  r¢~) 
+ cos 2~z (h2. r u -  ha. r¢~) + cos 2~ (ha. r u -  h2. r¢~) 
+ cos 2 z  (ha. r~¢- h~r¢~) + cos 2~ (h~. r u -  ha. r¢~)}, 

(3.5) 

where S(s~, s~, sa) in the  correction te rm is some func- 
t ion of s~=sin Od2, i= 1, 2, 3. If  ~(r) is given by  (3.3), 
the  Pa t te r son  function, 

P ( r )  = I ~(r)~(r + r ' ) d r ' ,  (3.6) 

reduces to 
~ A~A~ [ B~B~ ] 

P(r )  = ~/~  ~Y • i,~(B~+B~) a/~exp B~ +B~ I t -  ( r~ -  r~)l~ 

(3.7) 
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Since the  A iA~/(B~ + B~) ~/2 are p ropor t iona l  to  the  peak  
he ights  in the  P a t t e r s o n  func t ion ,  we m a y  replace 
these  by  P( r )  in  (3-5), thus  ob ta in ing  the  ana logue  of 
(2.3.9), 

#~5~2#~1 cos ( ~  + ~2+  ~ )  
( ~/  ~/~/~ (1#~1~ +1#~1~ +1#~1~- 2) 

+ D(s~ses~) ~S {P(r)P(r')P(r + r')}~/e 
r , r  t 

× {cos 2 z ~ ( h ~ . r -  h2 .V)  + cos 2 ~ ( h 2 . r - h ~ . r ' )  
+ cos 2~  (h2. r -  h3. r ' )  + cos 2~  (h3. r -  h2. V) 
+ cos  2 ~  (h3.  r -  h~. r ' )  + cos 2~  (h~. r -  h3. r ' ) } .  

(3.8) 

The  same resul t  follows if o ther  e lec t ron dis t r ibu-  
t ions  are used, e.g. if 

~(r) = ~7 A~/(1 + B j l r - r ~ l ~ ) .  (3.9) 
j= l  

I n  shor t  t he  same resul t  holds  for all  e lec t ron  distr i -  
bu t ions  a p p r o x i m a t i n g  a discrete  a t o m  s t ruc ture .  

I t  is clear t h a t  t he  sum in (3.8) is to  be t a k e n  over  
al l  P a t t e r s o n  peaks  r ,  r ' .  I n  app l i ca t ion  i t  is assumed 
t h a t  t he  func t ion  D of the  th ree  var iab les  st, se, s~ is, 
to  a good app rox ima t ion ,  a func t ion  of st .  sg.. sa alone. 
Hence  D(s~s2sa) is found  numer i ca l l y  by  comput ing  
(3.8) for those  i nva r i an t s  ~v~ + ~v~ + ~oa which,  as a con- 
sequence of the  space group s y m m e t r y ,  are equa l  to  
0 or n. I n  those  ins tances  the  magn i tudes  of the  lef t  
side of (3.8) would  be known.  A l though  th is  s imple 
procedure  would  no t  be appl icable  in the  space group 
P1,  i t  is possible to  t r e a t  th i s  space group in a special 
way.  

4. N u m e r i c a l  t e s t s  

At  f i rs t  two one-d imens iona l  tes ts  were carr ied  out  
wi th  s t ruc tures  hav ing  no s y m m e t r y .  I n  one, ident ica l  
a toms  were p laced  a t  0, 1/5, 1/4, 9/20. The  t rue  va lue  
of [d~1#4#51 cos ( ~ 1 + ~ 4 - ~ 5 )  was 2.62; i ts  value,  as 
compu ted  f rom (2.3.10), was 2.57. I n  the  second 
example ,  ident ica l  a toms  were p laced  a t  0, 0.133, 
0.289, 0.422, 0.639, 0.863. The  expression 

[#4#5#91 cos (~4+ ~5-  ~9), 
wi th  the  t rue  va lue  0.62, was compu ted  to  be 0.66 by  
(2.3.10). Since these  examples  were des igned to  exh ib i t  
t he  effect of r a t i ona l  dependence  and  over lap  in the  
P a t t e r s o n  func t ion ,  t h e y  afford p r e l im ina ry  indica-  
t ions  of the  fac t  t h a t  (2.3.10) is r e la t ive ly  insensi t ive  
to these effects, 

A th ree -d imens iona l  tes t  in  the  space group P212t2~ 
i nvo lved  the  placing of t en  a toms,  four  carbon,  two 
n i t rogen ,  a n d  four  oxygen  a toms  in  the  a symmet r i c  
un i t  of t he  un i t  cell. The  a r r a n g e m e n t  of the  a toms  
was chosen to  s imula te  a t rue  s t ruc tu re  and  invo lved  
a considerable  a m o u n t  of over lap in  the  P a t t e r s o n  
funct ion .  I n t e r a t o m i c  vectors  were compu ted  to the  
neares t  1/30 in the  x-d i rec t ion  and  the  neares t  1/60 
in  the  y- and  z-directions.  E q u a t i o n  (2-3.10) t hen  
y ie lded  the  values of the  e ighteen  expressions 

I~A'Vh#k~'~h_l_k[ COS (~]Ph 21 - (~k-- OPh-~ k) 

invo lv ing  the  i nva r i an t s  q~h+ ~Vk--(~h+k l is ted in col- 
u m n  1 of Table  1. The t rue  values  of these expressions 
are shown in co lumn 2. 

Table  1. Comparison of values of 

I#h#k#h+kl COS (~h+ ~k-- ~h+k) 
with those computed from (2 .3 .10) for  an artificial 

10 atom structure in space group P212121 

Computed True 
h k h + k values values 

3 6 0 3 g 0 6 0 0 -- 3-51 -- 7.23 
3 0 4 3 0 4 6 0 0 5.44 4.85 
3 0 7 3 0 7 6 0 0 --7.21 - -7 .15 
3 0 8 3 0 g 6 0 0 15.81 15.49 
1 0 2 1 0 2 2 0 4 9.68 10.37 
1 22 1 22 2 0 4  3.27 3.89 
1 42 1 42 2 0 4  4.00 3.63 
2 0 4 2 0 4 0 0 8 --4-02 --9"75 
3 0 4 3 0 4 0 0 8 7"77 7.61 
0 7 4 0 7 4 0 0 8 10-09 6-16 
3 0 4 3 0 4 6 0 8 6-77 4"47 
3 2 4 3 2 4 6 0 8 4"18 3"37 
3 3 3 3 3 3 0 6 6 3"98 3"19 
2 4 3 '2 4 3 0 8 6 --2"40 --2.85 
5 4 3 5 4 3 0 8 6 3"43 4.04 

l 0 3 7 0 3 6 0 14.80 17-05 
6 1 0 0 T 1 6 0 1 23-82 21"17 

7 0 0 l T 3 6 1 15-83 13.76 

The  i nva r i an t s  of Table  1 are composed of phases  
associated wi th  one-, two- and  th ree -d imens iona l  
s t ruc tu re  factors.  I n  spite of considerable  over lap  in 
the  P a t t e r s o n  func t ion ,  t he  q u a n t i t a t i v e  ag reemen t  
shown in Table  1 is sa t i s fac tory .  I n  pa r t i cu la r ,  those  

I#h#k#h+kl COS (~h+ ~k-- ~h+k) 

hav ing  nega t ive  values  are cor rec t ly  computed .  I t  is 
k n o w n  f rom the  p r o b a b i l i t y  t h e o r y  t h a t  t he  va lue  of 
COS ((Ph-~ ~ k - -  (Ph+k) is genera l ly  pos i t ive  if ] ~h~k~'~h_{_kl 
is large. Clear ly  i t  is i m p o r t a n t  to  de t e rmine  the  
i nva r i an t s  ~h + ~k -- ~h+k for which  cos (~h + ~k--  ~h+k) 
is negat ive .  

I t  is a p p a r e n t  f rom the  n a t u r e  of the  fo rmulas  
descr ibed here t h a t  the  accuracy  wi th  which  phases  
m a y  be de t e rmined  depends  upon  the  qua l i t y  of the  
P a t t e r s o n  funct ion .  I n  a fo r thcoming  paper  a proce- 
dure  for ob ta in ing  high qua l i t y  P a t t e r s o n  maps  will 
be described. 
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